ABSTRACT

Identification of potential hydrocarbon bearing zone in non Archie reservoirs i.e. silty/shaly reservoirs always poses problem because of log characteristics which usually does not show any meaningful results on conventional log evaluation. For this reason most of the silty/shaly layers usually been left out or interpreted as non reservoir.

In Ankleshwar field of Cambay Basin, Gujarat, India some of the similar silty/shaly zones found to be oil producer on testing. So the main objective of the study is to search for other prospective zones within the non Archie reservoirs mainly by integrating the log signatures along with the testing results and other geological information through reverse modeling.

Conventional log processing & evaluation techniques are not much useful in this type of reservoirs therefore a set of log overlays mainly SP Vs Resistivity, Resistivity Vs GR and Density Vs GR have been used along with the conventional logs to delineate the prospective zones within the non Archie reservoir. The overlays of SP Vs Resistivity and Resistivity Vs GR in collaboration with other logs are mainly useful for facies identification, whereas the new innovative overlay of Density Vs GR (in reverse scale) found to be a good identifier for prospective zones, as it shows prominent cross-over against the porous and permeable zones.

The main emphasis has been given to normalize the log responses in shale section so that any aberration/ anomaly can be judged against the good/prospective facies. This overlay technique has also been validated against other available clean reservoirs of this field.

Non Archie reservoirs of more than fifty wells of this field have been studied using the above technique. Results are very encouraging, twenty wells having more than thirty porous & permeable layers appears to be promising from hydrocarbon point of view and recommended for testing.

INTRODUCTION

Ankleshwar field which is doubly plunging anticline with multilayered sandstone reservoirs of deltaic origin. The oil bearing rocks of Ankleshwar were classified into three groups viz. lower, middle and upper. The main oil pools are confined to middle and upper sand groups, stratigraphically they are known as Hazad and Ardol members respectively.

Present study is confined to re-evaluation of non Archie reservoirs viz. Sand-A of Hazad & Sand-B of Ardol with main emphasis on the available nine wells testing data of Sand-A, out of which seven wells are oil producer. For this purpose signature matching of different logs and their overlays using reverse modeling technique have been tried to identify different sand facies within Sand-A & Sand-B and to know their likely potential from hydrocarbon point of view.
METHODOLOGY

Analysis of different logs, geological information and core study result reveals that Sand-A & Sand-B are mainly shaly/silty and having high density, low resistivity (2 to 4 ohm-m). In this type of formations having such log responses, facies analysis found to be more useful to pinpoint the areas for delineation. So for identifying the good and prospective facies, each log responses along with different overlays have been used.

Since one overlay is not sufficient to identify facies, different overlays like SP–Resistivity, GR–Resistivity and Density–GR (in reverse scale) have been used. The main emphasis has been given to normalised the log responses in shale section so that any aberration/ anomaly can be judged against the good/ prospective facies.

Density–GR (in reverse scale) which is little innovative and of unorthodox type, where GR has been plotted in reverse scale to get a crossover against the zone where both GR and Density values are low so as to identify the porous and permeable zone from shaly and tight zones.

The presence of Density–GR crossover along with reasonably good SP anomaly and moderate resistivity became the most useful and authentic identifier of good/ prospective facies and the same has been validated with available testing results of seven wells in Sand-A. This methodology has been used to delineate the good/ prospective zones for both Sand-A & Sand-B in more than 50 wells of Ankleshwar field during the course of this study. A pictorial example of all the overlays along with different log responses is shown below.

Fig.1
DISCUSSION OF RESULTS

After analyzing the individual log signature in conjunction with different log overlays of about 50 wells the following qualitative/quantitative criteria have been adopted for identifying a prospective sand facies which appears to be interesting from hydrocarbon point of view.

~ The zone should have significant SP development and moderately clean (preferably GR<30 API).

~ Presence of mudcake from caliper log is also desirable which indicates the presence of porous/permeable zone.

~ Resistivity should be > 2 ohm-m, Density should be < 2.3 gms/cc and Neutron should have a tendency to match with density.

Several good sand facies both in Sand-A & Sand-B have been identified using the above methodology out of those few zones have been identified as prospective from hydrocarbon point of view and recommended for testing.

CONCLUSIONS

✓ It is observed that the prospective zones should have at least significant SP development, moderately clean and having moderate resistivity of about 2-3 ohm-m. The zone should have density lower than 2.3gms/cc. The presence of mud cake may give an additional indication of porous/permeable zone if available.

✓ The presence of Density–GR (in reverse scale) crossover or the tendency towards cross-over supported by good SP & Resistivity found to be the most effective identifier of prospective facies from hydrocarbon point of view.

✓ Total 21 wells have been identified as prospective candidate for testing clustered mainly in three different areas as shown in Fig.3.

REFERENCES

1. Final Development Plan of Ankleshwar Field By Indo – Soviet Group (Dr. A. D. Bitchkevsky and Shri R. D. Mathur); December, 1979
2. Petrophysical Studies on Core Samples of Ankleshwar Well by Shri R. K. Khurana, M. S. Bist and Dr. C. S. Sandhu; Core Lab, IRS, Ahmedabad
EXAMPLE

The example of logs and overlays in flowing and non-flowing wells of Sand-A are shown below.

Fig. 2
PROSPECTIVE AREAS

Fig. 3
A. K. Bhanja, DGM Geophysics (Wells) a Hons. Graduate in Mathematics and a Post Graduate in Applied Geophysics from Indian school of Mines, Dhanbad, joined ONGC in 1978. He is having more than 33 years of experience in log interpretation of various Onshore & Offshore fields in India. He is the recipient of prestigious Chairman’s Innovation Award, 2008 for developing a new equation for CBM Gas Content Estimation from logs. His recent work on Shale Gas has been accepted for oral presentation for forthcoming “2012 SPE Middle East Unconventional Gas Conference & Exhibition at Abu Dhabi, UAE.

Rajesh Chandra, is presently working in CEWELL as a Petrophysicist. He holds a Master Degree in Exploration Geophysics from Banaras Hindu University, India. He has more than 23 years of Oil Industry experience in well logging data Acquisition, Processing & Interpretation. He has acquired specialization in Production Log quantitative interpretation. He has worked at different work centers of ONGC including Neelam-Heera Asset of Mumbai Offshore.

B. K. Saikia, DGM(Wells) did his Masters degree in Physics. He joined ONGC as logging field engineer in 1983 at Nazira, Assam. Later joined Logging Interpretation group at Nazira, Assam As a petrophysicist he worked extensively in different oil fields of Assam. In 1996 he joined Exploration & Development Directorate at Dehradun and looked after all the facets exploration and development activities of oil and gas fields of southern region including shallow and deep water activities. In 2006 joined CEWELL, Vadodara where he executed successfully a number of important projects. Also associated with the evaluation of oil & gas fields of South America and Myanmar as a part of due diligence of OVL.

Asim Samanta, GM Geophysics (Wells), a Hons. Graduate in Mathematics, a post graduate in Exploration Geophysics from IIT, Kharagpur, joined ONGC as Graduate Trainee in 1977. He has worked at several work centres of ONGC including Bombay Offshore Project, GEPIC, ERBC-Nazira, WRBC-Ahmedabad, Western onshore Basin, Baroda and CEWELL. He has taken over as Head of CEWELL in June 2008.